
kvmd-armbian GPIO ATX Interface
Christoph, St.Gallen, 24 Jan 2023     

ATX Interface Board (Hardware)
You should find the hardware with google:  aliexpress pikvm atx board

At the moment it says in Aliexpress: ATX CM4 Raspberry pikvm HDMI CSI KVM IP pi

(I don’t put the URL here, the don’t long live :)  )

Understanding GPIO Pin´s

Intro

https://iot4beginners.com/difference-between-bcm-and-board-pin-numbering-in-raspberry-pi/

Quote:
GPIO BOARD– This type of pin numbering refers to the number of the pin in the plug, i.e, the 

numbers printed on the board, for example, P1. The advantage of this type of numbering is, it will 

not change even though the version of board changes. 

GPIO BCM– The BCM option refers to the pin by “Broadcom SOC Channel. They signify the 

Broadcom SOC channel designation. The BCM channel changes as the version number changes. 

kvmd-armbian
Our GPIO python file is  /usr/local/lib/python3.10/dist-packages/kvmd/plugins/atx/gpio.py

It is best to write your values directly in this gpio.py. 

BCM numbers are used, the addressing addresses from the Linux Core to the chip

And “/etc/kvmd/override.yaml” only to be used for activation, and no pin to be defined there.

BCM Calculator Allwinner Chips

If you have an OrangePi Zero (Cpu's H2/H3/H5) you will not have the BCM numbers in the table 

from the manual. 

Then there is an online converter that you can use.  If PA03 don’t write PA3 NO.  You have to write 

the corrct full Name PA03 into the Calculator!  (it works also for H616)

 https://jsfiddle.net/tuav7f6q/1/

Below I show my OrangePi Zero 2 (CPU H616), where the BCM number GPIO is also shown in the 

user manual.

https://iot4beginners.com/difference-between-bcm-and-board-pin-numbering-in-raspberry-pi/
https://jsfiddle.net/tuav7f6q/1/


GPIO Configuration

Example Raspberry 4

(Pin is the Plug on Board)  

Original in kvmd-arbian from Raspberry Pi4:  

nano /usr/local/lib/python3.10/dist-packages/kvmd/plugins/atx/gpio.py

   
 def get_plugin_options(cls) -> dict:
        return {
            "device": Option("/dev/gpiochip0", type=valid_abs_path, unpack_as="device_path"),

            "power_led_pin":      Option(23,    type=valid_gpio_pin),
            "power_led_inverted": Option(False, type=valid_bool),
            "power_led_debounce": Option(0.1,   type=valid_float_f0),

            "hdd_led_pin":      Option(22,    type=valid_gpio_pin),
            "hdd_led_inverted": Option(False, type=valid_bool),
            "hdd_led_debounce": Option(0.1,   type=valid_float_f0),

            "power_switch_pin": Option(24,  type=valid_gpio_pin),
            "reset_switch_pin": Option(27,  type=valid_gpio_pin),
            "click_delay":      Option(0.1, type=valid_float_f01),
            "long_click_delay": Option(5.5, type=valid_float_f01),
        }



My OrangePi Zero 2  (CPU H616)

Pinout Diagramm

On the Pinout Diagramm, I only use the pins that have no special function. but direct.

So by me: PC6/PC11/PC5/PC8

The connection cables have double connectors, so the correct contacts are next to each other for 

the connection to the ATX interface board.

I would plan and choose that in advance so that the pins Power_LED,HDD_LED are next to each 

other. And Power/Rest are next to each other.



Configuration OrangePi Zero2 (H616)

So now i change to my Board and activate it.  (Pin is the Plug on Board)

nano /usr/local/lib/python3.10/dist-packages/kvmd/plugins/atx/gpio.py

    def get_plugin_options(cls) -> dict:
        return {
            "device": Option("/dev/gpiochip0", type=valid_abs_path, unpack_as="device_path"),

            "power_led_pin":      Option(70,    type=valid_gpio_pin),
            "power_led_inverted": Option(False, type=valid_bool),
            "power_led_debounce": Option(0.1,   type=valid_float_f0),

            "hdd_led_pin":      Option(75,    type=valid_gpio_pin),
            "hdd_led_inverted": Option(False, type=valid_bool),
            "hdd_led_debounce": Option(0.1,   type=valid_float_f0),

            "power_switch_pin": Option(69,  type=valid_gpio_pin),
            "reset_switch_pin": Option(72,  type=valid_gpio_pin),
            "click_delay":      Option(0.1, type=valid_float_f01),
            "long_click_delay": Option(5.5, type=valid_float_f01),
        }



Activate ATX Function

nano /etc/kvmd/override.yaml

    atx:

        type: gpio

Change just from disabled to gpio,  save it

maybe make a sync command,  reboot.

Or restart all kvmd services, i prefer reboot.

Electric
You need the 4 lines that you have defined.  (Power_LED,HDD_LED,Reset,Power) 

Additionally a GND (Ground) and  3.3 volts

So total 6 lines from your GPIO Header to the ATX Interface Board.

Be careful, I don't show pictures because there are different Pi boards


	ATX Interface Board (Hardware)
	Understanding GPIO Pin´s
	Intro
	Our GPIO python file is /usr/local/lib/python3.10/dist-packages/kvmd/plugins/atx/gpio.py
	It is best to write your values directly in this gpio.py.
	BCM numbers are used, the addressing addresses from the Linux Core to the chip
	And “/etc/kvmd/override.yaml” only to be used for activation, and no pin to be defined there.
	BCM Calculator Allwinner Chips

	GPIO Configuration
	Example Raspberry 4
	nano /usr/local/lib/python3.10/dist-packages/kvmd/plugins/atx/gpio.py
	My OrangePi Zero 2 (CPU H616)
	Pinout Diagramm
	Configuration OrangePi Zero2 (H616)

	nano /usr/local/lib/python3.10/dist-packages/kvmd/plugins/atx/gpio.py
	Activate ATX Function

	Electric

